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A turbulent dispersion model for particles or bubbles
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Abstract. A model for dispersed two-phase flow is derived based on a Boltzmann equation. This model is shown
to be compatible with the two-fluid model, and includes the source of dispersion. In this model, dispersion is the
result of the correlation of the liquid velocity fluctuations with the number density (perhaps more appropriately,
with the trajectories of the individual dispersed units). Using this derived force, and a very simple assumption
regarding the correlation of the presence of a dispersed unit and the carrier fluid velocity, a form for this force
can be derived. This form gives a force which is proportional to the scalar (dot) product of the fluid Reynolds
stress tensor with the gradient of bubble number density. For isotropic turbulence, the force is proportional to the
gradient of number density. The constant of proportionality depends on the ratio of the dispersed unit relaxation
time to the liquid turbulence time scale.
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1. Introduction

A stream of bubbles or particles moving through a turbulent fluid will spread out. This spread-
ing, or dispersion, is a collective result of the random motions of the fluid and dispersed
material. The ‘classical’ model for this effect is to include a flux of dispersed material in a
continuity equation (which is actually the number density equation) which is proportional to
the gradient of number density.

The appropriateness of this assumption for the two-fluid approach is questionable, since the
quantities affecting dispersed phase dynamics are coupled to a momentum equation, which is
an equation for the dispersed phase (averaged) velocity. Moreover, it is unsettling that the
diffusion model gives a flux of the dispersed phase, even when the velocity of the dispersed
phase is zero. Classical motivations for the diffusion model derive diffusion as a flux of the
dispersed material with respect to the CARRIER fluid velocity. This model therefore replaces
the need for a momentum equation for the dispersed phase, and models the effect of the
random fluid forces by a flux proportional to the gradient of the number density. Models which
treat forces on the dispersed phase through a momentum balance are incompatible with the
classical diffusion model, and models that use a diffusion term in the equation of conservation
of mass, and a momentum equation for the forces on the dispersed phase have not been put on
solid ground.

Derivations of the dispersed phase mass and momentum equations have not, to this point,
led to a ‘natural’ model for dispersion. Models for motions of large numbers of particles
include statistical mechanics, started by Maxwell and Boltzmann, reached a maturity in the
1950s (see [1]). This type of model assumes that the positions and velocities of the particles
are random, and the randomization is due to collisions between the particles. All of these



260 Donald A. Drew

approaches lead to equations of motion for a fluid via ensemble averaging. Models of this
type are also used for plasmas and for quantum mechanics.

Statistical considerations are also important in turbulent flows, where the randomness
arises from the growth and interaction of motions on scales smaller than the flow domain.
Almost simultaneously to the development of turbulence models, the motion of small particles
in turbulent flow was studied by Tchen [2]. Hinze’s [3] book gives a good overview.

An approach that combines the derivation and solution of the probability density func-
tion (PDF) for the particle concentration and the statistics of velocity correlations has been
developed by Reeks [4].

The motion of individual particles in a fluid was the subject of classical thinking by
Archimedes, da Vinci and Michaelangelo. Quantitative progress was made by Stokes [5],
and models for the motion of particles in a given fluid motion (sometimes referred to as the
‘frozen’ problem) include the BBO equation [6], and the model due to Maxey and Riley [7].

The motion of particles in fluids (but not necessarily in turbulent flow) stems from the work
on fluidized beds [8], gas-liquid flows [9] and dusty gases [10]. General continuum equations,
called two-fluid equations, have been derived by various methods (see [11–15]). Some of these
models are derived by averaging, but all treat the particle motion and the fluid motion as two
separate continuua. A systematic treatment is given by Drew and Passman [16].

A model for the motions of the particle continuum when the flow is turbulent has been
derived by methods similar to that for the Reynolds averaged Navier-Stokes equations by
Elghobashi and Abou-Arab [17]. In this model, they do not use Favre (i.e., mass-weighted)
averaging in the particle mass equation, but do not account for the difference thereby engen-
dered between their aveage velocity and the average velocity that appears in the momentum
equation.

In this paper, we wish to unify the two-fluid approach and the PDF approach. Specifically,
we shall derive a version of the particle mass and momentum equations from the PDF for
the particles, and use the expressions for the terms in the momentum equation, along with
assumptions about the trajectories and randomness, to derive expressions for the terms re-
sulting from the interactions of the particles with the fluid turbulence. This approach defines
the particle velocity field in terms of the average mass flux. This very fundamental idea pre-
cludes the presence of a diffusion term in the particle mass balance equation. The essence
of diffusion, i.e., the net motion of particles from regions of high concentration to regions of
low concentration, then must appear as a force in the particle momentum equation. This term
is identified, and evaluated for different assumptions about the (microscopic, or individual)
particle momentum equation.

2. Averaged balance equations

We can obtain averages of balance equations by taking the product of the balance equations
with the phase indicator function, Xk, manipulating using the product rule for differentiation,
and then performing the averaging process. For balance of mass, we have

∂Xkρ

∂t
+ ∇ · Xkρv = ρ

(
∂Xk

∂t
+ v · ∇Xk

)
. (1)
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Here ρ is the density and v is the velocity, and the phase indicator function is defined by

Xk(x, t) =
{

1, if phase k occupies x,
0, otherwise.

(2)

The probability of phase k occupying point x at time t is

αk = Xk. (3)

The vast majority of the literature in multiphase flow calls αk the volume fraction. Although
this is a misnomer, we shall also refer to it as such.The topological equation is

∂Xk

∂t
+ vi · ∇Xk = 0 , (4)

where vi is the velocity of the interface. Substituting this in (1) we may reduce the right-hand
side to


k = [ρ(v − vi )] · ∇Xk . (5)

This is the interfacial source of mass due to phase change. Note that if (v − vi ) · n = 0, then

k = 0. We also define the average density by

αkρk = Xkρ , (6)

the average velocity of phase k by

αkρkvk = Xkρv . (7)

The average velocity defined by (7) is the mass flow velocity. If there is no mean flux of mass
of phase k, then vk = 0. If we use definition (7) in Equation (1), the equation of balance of
mass for phase k becomes

∂αkρk

∂t
+ ∇ · αkρkvk = 
k . (8)

The momentum equation for phase k is derived by multiplying the equation of balance of
momentum by Xk and averaging. After some manipulation, the equation becomes

∂Xkρv
∂t

+ ∇ ·Xkρvv = ∇ ·XkT +Xkρg + ρv [(v − vi ) · ∇Xk] − T · ∇Xk . (9)

where T is the stress tensor, and g is the external acceleration (due to gravity, for example).
Defining the averaged stress by

αkTk = XkT , (10)

the Reynolds stress by

αkTRe
k = −Xkρv′

kv
′
k , (11)

the interfacial velocity by

vmki
k = ρv(v − vi ) · ∇Xk (12)
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and the interfacial force by

Mk = − T · ∇Xk , (13)

we arrive at the equation of balance of momentum in the form

∂αkρkvk
∂t

+ ∇ · αkρkvkvk = ∇ · αk

(
Tk + TRe

k

)
+ αkρkg + Mk + vmki
k . (14)

3. Kinetic-theory approach

In this section, we shall derive the balance equations for a dispersed phase consisting of
spheres of a given size and mass, moving a fluid of constant density. We start from a Boltz-
mann equation. Comparison of the balance equations for mass and momentum with (8) and
(14) results in a form for the interfacial force that is related to the random motions in the liquid
and the dispersed phase units.

Let f (z, v, t|u) be the number density of identical spheres in phase space, given that the
liquid velocity field is assumed known for all x in some flow domain, for all times previous
to the instant t ; that is, we assume that u(x, t ′) is given for t ′ < t . Then in a small volume
dz, there are f (z, v, t|u) dz dv spheres having velocity within dv of velocity v. The relation
between the joint probability density for the dispersed unit statistics and the fluid statistics
f (z, v,u, t) and the conditional probability density f (z, v, t|u) is assumed to be

f (z, v,u, t) = f (z, v, t|u)P (u) ,
where P(u) is the fluid velocity density function.

If the effects of collisions are neglected the equation becomes

∂f

∂t
+ ∇ · (vf )+ ∂

∂v
· (f ad) = 0 . (15)

where ad is the acceleration of a dispersed unit. We assume that ad depends on the velocity
of the dispersed unit and the velocity of the liquid. If we integrate Equation (15) over all
dispersed unit velocities and fluid velocities, we have

∂nd

∂t
+ ∇ · ndvd = 0 , (16)

where nd is the dispersed unit number density,

nd =
∫
f dv du,

and vd is the average dispersed unit velocity,

vd = 1

nd

∫
vf dv du .

If we multiply Equation (15) by v, integrate over the velocities, and use the relation∫
v
∂

∂v
· (f ad) dv = −

∫
f ad dv , (17)
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we have

∂ndvd
∂t

+ ∇ · ndvv = f ad . (18)

The term ndvv can be written as

ndvv = ndvdvd − ndTRe
d ,

where TRe
d is the dispersed phase stress, which corresponds to the Reynolds stress in the

dispersed component. We shall also ignore dispersed unit contacts (collisions).
These equations are analogous to the dispersed component equations of balance of mass

and momentum with 
k = 0 and Td = 0. Specifically, if

αd = nd
4
3πr3

d ,

then multiplying Equation (16) by 4
3πr3

d gives Equation (8). The interpretation of Equation
(18) is more complicated, since part of the acceleration appears in the virtual mass terms.
However, we recognize that if g is the external force on the dispersed unit, and therefore if

ad = g + âd,

then

Fd = f âd

is the average force on the dispersed phase due to interaction with the fluid. This force contains
important interfacial forces, such as buoyancy, drag, lift and turbulent dispersion. If we assume
that the force on the dispersed unit can be written as the force due to the average fields, plus a
fluctuation, then we have

âd(u, v) = âd(u, v)+ a′
d .

Substituting this expression in the interfacial force density gives

Fd = nd âd(u, v)+ FTD
d ,

where

FTD
d = f a′

d

is the turbulent dispersion force.

3.1. TRAJECTORIES

If u(x, t) is known, then the trajectory of any dispersed unit will be determined in terms of its
initial position and velocity. If that trajectory is such that it arrives at point z at time t with
velocity v, then its history is determined. Moreover, the acceleration of that unit is also known.
The statistics of the trajectories, and therefore, of the acceleration of the dispersed unit at z at
time t are determined in terms of the statistics of the initial velocities and positions, and the
carrier fluid statistics.
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Figure 1. Trajectories.

This reasoning leads to a net force, as indicated in Figure 1. If more particles arrive at the
point indicated from above than from below, the net force is directed down.

Let us consider the trajectory of a dispersed unit that is at location z at time t, with velocity
v. The position and velocity of that dispersed unit at any other time t ′ makes up its trajectory,
and is denoted here as

ζ(t ′;ωe, ζe)

and

ω(t ′;ωe, ζe) = dζ

dt′
(t ′;ωe, ζe).

The trajectory is the solution of the initial value problem

d2ζ

dt′2
= a′

d , ζ(te,ωe, ζe) = ζe,
dζ

dt ′
(te,ωe, ζe) = ωe,

where te is the initial time, which is arbitrary thus far.
Given the liquid velocity field, the motion of an individual dispersed unit is given by

(ρd + Cvmρl)
dv
dt

= Cvmρl
Du
Dt

− ∇p + S(u − v)+ CLρl(v − u)× ∇ × u + ρdg ,

where Cvm is the virtual mass coefficient, equal to 1
2 for spherical units, CL is the lift coeffi-

cient, also equal to 1
2 , and S = 3

2rd
CDρl|v − u| is the drag per unit velocity, with CD the drag

coefficient and rd the particle radius. Here, D/Dt denotes the material derivative following the
liquid. If we assume that the liquid momentum equation is unaffected by the dispersed units,
we have

ρl
Du
Dt

= −∇p + ρlg .

If we use this equation to eliminate the pressure gradient, we have

(ρd + Cvmρl)
dv
dt

= (1 + Cvm) ρlDu
Dt

+ S(u − v)+ CLρl(v − u)× ∇ × u + (ρd − ρl)g .

It should be noted that this last substitution is inappropriate if there are coupling effects, that
is, if the motion of the particles affect the fluid.
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Note that ad is now given by

ad = (1 + Cvm) ρl
ρd + Cvmρl

Du
Dt

+ 1

τd
(u − v)+ CLρl

ρd + Cvmρl
(v − u)× ∇ × u . (19)

where the dispersed unit relaxation time is given by τd = (
ρd + 1

2ρl
)
/S.

3.2. CORRELATION ASSUMPTIONS

We wish to use simple, yet reasonable assumptions about the interaction of the dispersed units
with the fluid to calculate the Reynolds stress and the interfacial force density.

Thus, we assume that

f (z, v, t|u) dz dv = f(ζ,ω, t − τ|u) dζ dω.

We denote dζ dω/dz dv = J . The randomness in the position and velocity of the dispersed
unit is due to the randomness in the liquid velocity field, which is felt by the dispersed units
through the various forces on the dispersed unit due to the liquid, and in the uncertainty in the
initial position and velocity of the dispersed unit. In this work, we treat the randomness in the
liquid velocity field by calculating trajectories, assuming that the liquid field is known, and
then averaging over the liquid velocity field. Thus, the lack of predictability of the dispersed
unit position ζ at time te, given that the dispersed unit is located at z at time t , is due to the lack
of predictability in the liquid velocity over the trajectory history. More specifically, we shall
assume that the dispersed unit trajectory is highly correlated with liquid statistics for a short
time, but is increasingly uncorrelated as the time between determination of the dispersed unit
position increases.

Thus, we assume that dispersed units that reach z with velocity v at time t , come from
position ζe with velocity ωe, at time te.

We next make some assumptions about the trajectories of the dispersed units and how they
are correlated with the forces that move them. Since we are interested in dispersion, we shall
assume that the dispersed units have a spatial gradient in their average number density. We
also assume that the dispersed unit trajectory and the velocity calculated along the trajectory
are perfectly correlated for t > t ′ > t − τe, and perfectly uncorrelated for t ′ < t − τe. Thus,
if a dispersed unit is at point z, with velocity v at time t , it was picked up by the fluid eddy
at time te = t − τe, at a position ζe at random from the dispersed units that are at ζe. Thus,
we assume that the conditional probability of having dispersed unit velocity v, given that the
fluid velocity is u, and that the dispersed unit had velocity ωe at time te is

f (z, v, t|u) = nd(ζe)δ(v − dζ

dt
(t, ζe,ωe, te)) δ(z − ζ(t, ζe,ωe, te)), (20)

where δ denotes the Dirac delta function, and ζ(t, ζe,ωe, te) is the trajectory of a dispersed
unit, given that it was entrained by a fluid eddy at time te at location ζe with velocity ωe.

Next, we assume that the number density at ζe can be expressed as a Taylor series in the
spatial coordinate. Thus, we have

nd(ζe) = nd(z)+ (ζe − z) · ∇nd(z). (21)

This assumption allows us to express the turbulent dispersion force density as

FTD
d = f a′

d = a′
d(ζe − z) · ∇nd , (22)
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where we note that

nd(z, t)a′
d = 0 .

Equation (22) is a valid approximation when the particle trajectories are short ‘rides’ in the
fluid eddies. The choice of scale of resolution for the problem attacked implies a spectrum of
scales which are unresolved by the mean flow. The effect of these scales must be modelled.
The underlying assumption here is that these scales are small compared to the length scales of
the mean flow. The assumption of linearity in Equation (21) results in a turbulent dispersion
force which is linear in the number density gradient, with the proportionality tensor given by
the correlation between the fluctuating force and the change in position of a dispersed unit.
We shall refer to the tensor a′

d(ζe − z) as the dispersion tensor.

4. Trajectories

The calculation of the correlation of the dispersed phase acceleration fluctuation with the
dispersed phase presence is very different for particles and for gas bubbles. In the next few
subsections we shall compute FTD

d when the dispersed units are particles or bubbles. We shall
do this by considering trajectories of the dispersed units and making an assumption about the
probability that the calculated trajectory occurs.

4.1. PARTICLE TRAJECTORIES

For small particles, where the density is of the same order of magnitude as the liquid, we see
that the ratio of drag to inertia is of order St−1 where St is the Stokes number, which is the
ratio of particle relaxation time to the fluid time scale. Thus, drag dominates the other forces
on the particle.

That is,

1

τd
(u − v) � Du

Dt

and

1

τd
(u − v) � (v − u)× ∇ × u .

Now we have

âd(u, v) = 1

τd
(u − v) ,

and

a′
d = 1

τd
(u′ − v′).

We shall drop the primes. Thus, the equations of motion for a small particle in a liquid velocity
field is

d2ζ

dt2
= 1

τd

(
u − dζ

dt

)



A turbulent dispersion model for particles or bubbles 267

4.1.1. Turbulence model for particles
We assume that the turbulence is adequately modeled as a sequence of large-scale fluid eddies,
each having a constant, uniform velocity [18]. From the Eulerian point of view, the fluid
velocity field will be characterized by periods of constant velocity, separated by intervals of
rapid change of velocity. In each eddy the particle trajectory is simple, starting from ζ with a
particle velocity of ω at time t ′. The force ad is then

ad = 1

τd
(u − v) , (23)

where τd is the particle relaxation time.
Using this model for turbulence suggests that the randomness of the particle velocity dis-

tribution is due to the mixing in the interval between uniform velocities. We shall refer to this
model as the random flight model.

The trajectory that is at z with velocity v at time t , given that it started at ζ with velocity ω

at time te, is given by

v (t) = u + e− (t−te)
τd (ω − u)

z (t) = u (t − te)+ τde
− (t−te )

τd (u − ω)+ ζ + τd (ω − u) .

We assume that the particle has resided in the eddy for a constant (i.e., non-random) time τe,
the time of entrainment into the eddy is te = t − τe.

4.1.1.1. Small eddy times

We wish to calculate the particle phase Reynolds stress

TRe
d = −md(v − vd)(v − vd). (24)

Substituting the assumed and derived relations for the probability density functions, we obtain

TRe
d /ρd = −

∫ ∫ ∫ [
(ωe − u)e−(t−τe)/τd + u

] [
(ωe − u)e−(t−τe)/τe + u

]

× Pr(ω, τe) dω dτe Pr(u) du = −ωeωee
−2τe/τd − u′u′ (1 − e−τe/τd

)2
, (25)

where Pr denotes the probability density function for the given variables. Recognizing that

TRe
d /ρd = −ωeωe

and

u′u′ = −TRe
f /ρf ,

assuming homogeneity of the turbulence, and solving for TRe
d , we have

TRe
d /ρd = TRe

f /ρf
(1 − e−τe/τd )2

1 − e−2τe/τd
. (26)

Note that as τe/τd → 0, we have T
Re
d → 0. Thus, if the particle relaxation time greatly

exceeds the eddy time scale, the particle will not respond to the fluid motions, and the particle
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Figure 2. Dispersion coefficient D vs. s = τe/τp

Reynolds stress will vanish. At the other extreme, as τe/τd → ∞, the particles are able to
follow the fluid velocity fluctuations relatively faithfully, and therefore,

TRe
d

ρd
→ TRe

f

ρf
. (27)

Also, the dispersion tensor becomes

1

τd
(u − v) (ζ − z) =


−e− τe

τd

(
τe

τd
−

(
1 − e− τe

τd

))
1 − e−2 τe

τd(
1 − e− τe

τd

)2

+ e− τe
τd

(
1 − e− τe

τd

)]
vv = −D(τe/τd)vv = D(τe/τd)TRe

d /ρd,

The dispersion coefficient D is plotted in Figure 2.
Note that the dispersion coefficient depends on the eddy residence time τe and the particle

relaxation time τp, and is maximum when the two time scales are about equal. This seems
sensible, because eddies in which the particles do not spend much time will not disperse the
particles, and eddies in which the particles reside for long times will transport particles, but
will not disperse them.

4.1.1.2. Large eddy times

In order to get the correct dispersion for turbulent flow containing a spectrum of time
scales, and consequently a spectrum of eddy residence times, we consider the trajectories as
shown in Figure 3.

In this case, we envision the fluid velocity fluctuation u having a drift value and a smaller
scale fluctuation. Clearly, the particle displacement is given by

ζ − z ∼= − (t − te)u

Then if Equation (23) is used, the particle dispersion tensor is given by

ad(ζ − z) ∼= − 1

τp
(t − te) (u − v) u

= − τe

τp
uu = τe

τp

1

ρc
TRe
c ,
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Figure 3. Long time trajectories.

where we again assume that the particle velocity and the fluid velocity are uncorrelated.
If the particle relaxation time is large, we have

MTD
d = τe

τp

ρd

ρc
TRe
c · ∇αd.

4.2. BUBBLE TRAJECTORIES

The equations of motion for a bubble in a fluid velocity field can be written as

d2ζ

dt2
=

(
∂u
∂t

+ u·∇u
)

− 2∇p/ρ + 1

τ

(
u − dζ

dt

)
− 2 ×

(
u − dζ

dt

)
,

where τd is the bubble relaxation time, ∇p is the fluid pressure gradient, u is the fluid velocity
field, and 2� is the vorticity. We assume that u = u0 + �× (ζ − zc), where zc is the center of
the vortex line. Furthermore, we assume that ∇p = ∇p0 − ρ� × � × ζ.

4.2.1. Turbulence model for bubbles
In order to describe the motion of a bubble in a liquid eddy, we assume that the effect of the
eddy can be described at each spatial point for random times, by constant pressure gradient
∇p0, constant velocity u0. We further assume that each eddy has no rotation, so that ω = 0.
Then the system of differential equations can be written as

dζ

dt
= v,

dv
dt

= f− 1

τb
v,

where f = −3∇p0/ρ + 1

τb
u0.

The trajectory that is at z with velocity v at time t , given that it started at ζ with velocity ω

at time te, is given by

v (t) = fτd + e− (t−te)
τd (−fτd + ω) ,

z (t) = fτd (t − te)+ τde− (t−te)
τd (fτd − ω)+ ζ + τd (ω − fτd) .
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If we again assume that the bubble has resided in the eddy for a constant (i.e., non-random)
time τe, the time of entrainment into the eddy is te = t − τe, and the velocity, position, and
force statistics are related by

v = fτd
(

1 − e− τe
τd

)
+ ωe− τe

τd ,

z = ζ + fτd
(
τe + τd

(
e− τe

τd − 1
))

+ ωτd

(
1 − e− τe

τd

)
.

Then, if the force and the bubble velocity are uncorrelated, we have

vv = ffτ2
d

(
1 − e− τe

τd

)2 + ωωe−2 τe
τd

If, further, the velocity statistics are homogeneous, we have vv = ωω, and

ff = vv
1 − e−2 τe

τd

τ2
d

(
1 − e− τe

τd

)2 .

Using this, the dispersion tensor becomes

(
f − 1

τd
v
)
(ζ − z) =


−e− τe

τd

(
τe

τd
−

(
1 − e− τe

τd

))
1 − e−2 τe

τd(
1 − e− τe

τd

)2 − e− τe
τd

(
1 − e− τe

τd

)
 vv

= −D(τe/τd)vv = D(τe/τd)TRe
d /ρd.

This is exactly the same dispersion tensor that was derived for small particles. However, in
this case there is no relation between TRe

d and TRe
c .

For eddy time scales that are large compared to the particle relaxation time, we have

ζ − z = −fτd
(
τe + τd

(
e− τe

τd − 1
))

− ωτd

(
1 − e− τe

τd

)
.

∼= −fτdτe

Thus,

ad(ζ − z) =
(

f − 1

τp
v
)
(ζ − z) ∼= −τeτpff ∼= τe

τp

1

ρd
TRe
d ,

so that the bubble dispersion force becomes

MTD
d = τe

τp

Cvmρf

ρd
TRe
d · ∇α,

where we have taken the effective density as the virtual density.

4.3. COMPARISON WITH A NUMERICAL EXPERIMENT

After some approximations have been made, the model has been implemented in a computer
code to make bubbly-flow calculations by use of the two-fluid (ensemble averaged) approach
suggested by Equations (8) and (14). This code has been used to predict the spreading of
bubbles injected into a stream with decaying turbulence.
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Figure 4. Volume fraction profiles for simulations. Symbols: DNS data. Lines: CFDShipM results. Present model
with CTD = 0·108.

First, we approximate the dispersed phase Reynolds stress by

TRe
d

ρd
≈ −2

3
kdI ≈ −2

3
kcI. (28)

Furthermore, we assume that the particles are sufficiently small that the drag force is well
approximated by Stokes drag, so that

τd = 2

9

a2

νc
, (29)

where a is the radius, and νc is the fluid viscosity. Finally, consistent with the k− ε model, we
assume that the fluid time scale is proportional to kc/εc. Then, if τc/τd is small, we have

MTD
d = −CTD τc

τd
kc∇αd, (30)

where

τc

τd
= 9νckc

2a2εc
(31)

is the ratio of time scales, and the constant of proportionality is CTD. This model agrees with
that proposed by Lopez de Bertodano [19].

This model has been implemented in the code CFDShipM [20], and used to predict the
dispersion of stream of particles released in decaying turbulence. The predictions were com-
pared to ‘data’ generated by solving the Navier–Stokes equations with a dynamical model for
bubble motions [21, 22]. Figure 4 shows the volume fraction predictions and data as a function
of the transverse coordinate at several different downstream locations.

5. Discussion

The model presented here arrives naturally at a dispersion model even withstanding the fact
that an oversimplified model for correlations is assumed. This dispersion model has several
noteworthy features. We discuss each of these.
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The dispersed unit flux is given by number density times the (average) dispersed unit
velocity. Thus, if there is a dispersed unit flux, there is a (non-zero) dispersed unit velocity.
This makes sense. If the dispersed phase is not moving (on average), it has zero velocity. If
there is a flux of dispersed units, then there is a non-zero velocity for the dispersed phase.

This means that the effect of dispersion is contained in a term in the dispersed unit mo-
mentum equation. The dispersion term is linear in the number density gradient to first approx-
imation. The proportionality tensor is given by the dispersed phase Reynolds stress, times a
scalar function of the ratio of the fluid eddy timescale and the dispersed unit relaxation time.
Thus, the momentum flux of the dispersed phase is related to how much momentum flux the
dispersed phase has, and also depends on a ratio of response time of an individual unit in an
eddy.

Using simplified assumptions about the liquid turbulence structure allows us to obtain a
closed form model. There are several physical effects that are omitted from this model. Note
that the pressure gradient in the fluid phase is retained, but modeled in such a way that it
will not have the local minimum lines that are evident in vortices. Thus, the particles will not
migrate to centers of vortices in this model. Furthermore, the effect of lift is also left out by the
same sort of assumption – i.e., the uniformity of an eddy precludes lift effects. These effects
could be included by assuming that each eddy is a region of fluid velocity with a constant
velocity, constant pressure gradient, and constant vorticity.

5.1. DIFFUSION MODEL

If we assume that the drag, turbulent dispersion, and the dispersed unit Reynolds stress domi-
nate the gas phase momentum equation, we can write

0 = αdS(vl − vd)−DTRe
d · ∇αd + ∇ · αdTRe

d .

Then, we can solve for the gas velocity in terms of the liquid velocity

vd = vl − 1

αdS
DTRe

d · ∇αd + 1

αdS
∇ · αdTRe

d . (32)

Substituting this in the equation of balance of mass for the dispersed unit phase gives

∂αd

∂t
+ ∇ · αdvl = ∇ · (Dd · ∇αd)− 1

S
∇ · (

αd∇ · TRe
d

)
, (33)

where the diffusivity tensor is defined as

Dd = 1

S
(D − 1)TRe

d .

Thus, we see that the turbulent dispersion term gives rise to a term that appears as diffusion of
the dispersed units relative to the liquid in the equation of balance of dispersed unit mass. The
effect of the carrier fluid turbulence giving rise to a drift velocity has been called turbophore-
sis. In this modeling approach, the second term on the right-hand side of (33) has this effect,
and arises naturally from the equations.

This dispersion model reduces to a diffusion model by assuming that the inertial terms are
negligible in the dispersed phase momentum equation. However, there are many situations
involving bubbly fluids or particles in fluids where the inertia of the dispersed phase is not
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negligible – any curved or nozzle flow will exhibit acceleration and virtual mass effects that
are not modeled by (33).

6. Conclusion

Note that the averaging used in the two-fluid model and the Boltzmann approach give an
average particle velocity weighted by the presence of particles,

αdvd = Xdv

and

vd = 1

nd

∫
vf dv du,

where we assume constant density for the particle phase. Elghobashi and Abou-Arab [17]
derive equations based on two separate averaging processes, first (tacitly assumed in their
paper) over the particles to get a two-fluid (interpenetrating fluids) model, and then over the
turbulence. When they (formally) apply the average over the turbulence, they do not weight
the particle phase velocity by the concentration, and thereby obtain a conservation of mass
equation for the particles of the form

∂αd

∂t
+ ∇ ·

(
αdvd + αdv′

d

)
= 0.

There are several problems with this approach. The first is esthetic, in that the quantity in the
divergence term is the average flux of particles, and is

αdvd + αdv′
d = αdvd = αdv

F

d

where v
F

d is the Favre averaged velocity. Here we have used the overbar symbol to denote
two different averages; the proper notation would use two different symbols. The second
problem is that the whole of the particle flux (i.e., αdvd + αdv′

d ) is the term that appears
in the momentum equation. Defining any velocity other than the Favre therefore requires the
difference between that velocity and the defined (non-Favre) velocity to be accounted for in
the derivation of the momentum equation. The third problem is the most crucial. Defining the
velocity vd as indicated leads to situations where vd = 0 but the particles still have a non-zero
flux. This can be illustrated by considering a turbulent flow mixing layer with particles in one
stream and none in the other. As the streams mix, particles move from the particle laden side
to the non-particle laden side. If this motion is modeled as diffusion, then the flux of particles
across the centerline of the mixing layer is non-zero, with the particle flux given by αdv′

d .
Changes of inertia due to this flux is not accounted for in the non-Favre model.

The model for particle or bubble motion derived in this paper has the advantages that it (i)
is based on the two-fluid model, so that all momentum effects are accounted for in the particle
momentum equation; (ii) gives rise to a particle dispersion term that accounts for the tendency
of random motions in the carrier fluid to spread the particles; and (iii) reduces to the diffusion
model when particle inertia is small. Moreover, the full particle inertia model will give the
correct inertia effects in flows where significant disequilibrium occurs.

We also note that another often overlooked disadvantage of the diffusion model is that
information travels infinitely rapidly. That is, the effect of a localized disturbance, such as a
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spike in the concentration, is felt at t = 0+ at all points in the domain, albeit at an exponen-
tially small level. The full momentum model cannot give infinite dispersed phase velocities,
and consequently, this feature of the diffusion model is not present in the full dispersed phase
momentum model.

Those who purport to derive a diffusive model using the two-fluid approach essentially
ignore definition (7), and define some other (sometimes reasonable) velocity for the dispersed
units. Most of these derivations also ignore the fact that the same term appears in the time
derivative in the momentum equation (14). This inconsistency is sometimes ‘fixed’ by using
the other velocity, and ignoring the extra terms in the momentum equations.

References

1. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases. Cambridge: Cambridge
University Press (1970) 423 pp.

2. C. M. Tchen, Mean Value and Correlation Problems Connected with the Motion of Small Particles
Suspended in a Turbulent Fluid. Delft: Ph.D. Thesis (1947).

3. J. O. Hinze, Turbulence. New York: McGraw-Hill (1959) 586 pp.
4. M. Reeks, On a kinetic equation for the transport of particles in turbulent flows. Phys. Fluids A 3 (1991)

446–456.
5. G. G. Stokes, On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambridge

Phil. Soc. 9 (1851) 1–141.
6. A. B. Basset, Treatise on Hydrodynamics. London: Deighton Bell (1888).
7. M. R. Maxey and J. J. Riley, Equation of motion for a small rigid sphere in non-uniform fluid. Phys. Fluids

26 (1983) 883–889.
8. J. D. Murray, On the mathematics of fluidization. Part I. Fundamental equations and wave propagation J.

Fluid Mech. 21 (1965) 465–493.
9. G. B. Wallis, One Dimensional Two-Phase Flow. New York: McGraw-Hill (1969) 408 pp.

10. F. E. Marble, Dynamics of Dusty Gases Ann. Rev. Fluid Mech. 2 (1970) 397–446.
11. D. A. Drew, Averaged field equations for two-phase media Stud. Appl. Math. 50 (1971) 133–155.
12. Yu. A. Buyevich, Statistical hydrodynamics of disperse systems, physical background and general equations.

J. Fluid Mech. 49 (1971) 489–507.
13. M. Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flow. Paris: Eyrolles (1975) 248 pp.
14. R. I. Nigmatulin, Spatial averaging in the mechanics of heterogeneous and dispersed systems. Int. J.

Multiphase Flow. 5 (1979) 353–385.
15. S. L. Passman, J. W. Nunziato and E. K. Walsh, A theory of multiphase mixtures. Appendix 5C of C.

Truesdell (ed.), Rational Thermodynamics. New York: Springer-Verlag (1984) 286–325.
16. D. A. Drew and S. L. Passman, Theory of Dispersed Two-Component Flow. New York: Springer-Verlag

(1998) 308 pp.
17. S. E. Elghobashi and T. W. Abou-Arab, A two equation turbulence model for two-phase flow. Phys. Fluids

26 (1983) 931–938.
18. M. Maxey, The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields.

J. Fluid Mech. 174 (1987) 441–465.
19. M. Lopez de Bertodano, Two-fluid model for two-phase turbulent jet. Nuclear Eng. Design. 179 (1998)

65–74.
20. A. E. Larrateguy, P. M. Carrica, D. A. Drew and R. T. Lahey Jr., CFDShipM: Multiphase code for ship

hydrodynamics. Version 2.24 Users Manual (1999) 146 pp.
21. O. A. Druzhinin and S. E. Elghobashi, Direct numerical simulation of bubble-laden turbulent flow using the

two-fluid formulation. Phys. Fluids 10 (1983) 685–697.
22. F. J. Moraga, A. E. Larrateguy, D. A. Drew and R. T. Lahey Jr., An assessment of turbulent dispersion models

for bubbly flow. Submitted (2001).


